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INTRODUCTION AND BACKGRGUND

Optimal periodic control has become an increasingly important area of

research as evidenced by the grester numbers of published papers, theses,

and dissertstioﬂs resulting from government grants, acadeafc intereat and

i{ndustrial sponsorship. Exsmples of periodic or cyclic processeas abound

ranging from the rhytlaic pulse of living creatures to the

i{in nature,

perpetual orbits of celestial bodies. Many arvre examples of an

optinization process of nature. In contrast, there are numerous

engineering systems designed to operate in a steady state conditions. In

many of these systems performance could be signtficantly improved by some

Chemicgl plant process control was one of the

form of cyclic operatioun.

firsz to be 1nvestigated for Jmprovement compared to steady state

perfarmancel’z'J. This wmotivated the first paper on optimal periodic

control4 and led to’ itsg subsequeitly rapid theoretical

7T Q
iy

c £
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development”’”’'*”, Sur-ey papers 9,10, and il sumhasrize malor

o

through 1975.

The research encompassed by this report was stimulated by a

controversy12'13'14 over an aerospace problen. The nonuptimality of

~ sceady gtate cruigse for an afvcraft with respect to fuel efficlencr was
16

shown 1in 1976 by Speyerls. However, subsequent effort

to find a

locally optimizing solution to this problem faiied wuslng standard

optimization computational techniques such as stcepest ascent and

conjugate gradient methods. This led Speyer and Evans to the formulation
of a mipnimum state optimal periodic contrnl problem that would generate
periodic solutions. A locally optimizing solution to this new prcblem was

obtuined in the form of an asymptotic expansion about a small parameter.




Thies analytical result provided excellent agreeuent with numerical results

obtained in a parallel effort17. Further numerical study of this

problem and the development of correctiona snd additions to the genaral
theory of optimal periodic control followedls. The resgults of this work
provided a better understanding of the source of fallures previously
encountered in attempts to solve the aircraft cruise prohblem.

This report describes a continuation of this research conducted at the
Frank J. Seiler Research Laboratory under Work Unit 2305~-F2-67. The
principal results of this effort have been presented at several
conferences and have been publighed in the open literature. The major
acconplishments obtained are summarized in the remainder of this feport
under three headings: 1) A Second Variation Condition; 2)
Computational Techniques; and (3) Optimal Aircraft Cruise.

This research has been a collaboration ‘of work by the vrincipal

The University of Texas at Austin; and two of his graduate students, David
E. Walker and David P. Dannemiller. The work by Professor Speyer and his
students was partially sponsored by the National Science Foundation Grant
EC57918246. The ectivities of the students also contributed significantly
to their Master's degrees.

A complementary research effort was eponsored by AFOSR Grant Number
77-3158 during the period 1 October 1976 to 31 Jauwuary 1982. Personnel
associated with this work Iincluded: Principal Investigatnr, Profeseor
Blmer G. Gilbert, The University of Michigan; Arthur E, Frazho,
post-doctoral resecrcher; and PhD students Daniei T. Lyorns and Dennis S.
Bernstein. Sae Professor Giluvert's Final Report19 for a sumpary and a

complete bibliography of their work in optimal periodic control.




OBJECTIVES OF RESEARCH

) The stated objective of thils regearch wag to develop the theory and
computational technique fur optimizing the filight path of an alrcraft with
respect to fuel consumption (maximize range for a given amount of fuel)
during thé cruise segment of flight. It then was intended to apply these
tools to a point mass model of an aircraft and determine a locally
optimizing cyclic cruise flight path in a proof of principle demonetration.

Their are nuxerous potential applications for this research. The more
obvious Air PForce benefits 1include: extend the range of an alr vehicle
with a fixed amount of fuel; reduce 1its fuel requirements for a given
range thereby increasing its load capability; and increase its endurance
allowing it to remain aloft louger. The improvements of periodic cruise
flight paths appear to be mostusuited for remotely piloted aircraft or
cruise missile t&pe applications. However, in ;any emergency or back-up

cperatione, 1t algo would be quite feasible for manned sysiems. _
§

PROBLEM FORMULATIGN AND FIRST ORDER NRCFSSARY CONDITIONS

The optimal perlodic control problem consists of winimizing the

performance criterion
1 t N
J(u(®), xp, T ) = glf; L(x(t),u(t))de, 8y

with respect to the perio' €T = (0,0), the p-vector control functions
u(e) €U, where U ig defined in Assumption 2 below, and the {(nitial states

x(0) = x € Rn, subject to the time-invariant dynamical equations

0

x(t) = f£(x(t},u(t)), (2)
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with the periodic boundary conditions

x(0) = x(1). (3)

Note that both the integrand of the performance index and the dynamical

equations are time-iuvariant.

Agsumption 1: f£{¢,¢) and L(¢,¢) and their derivatives up to second

order are assumed to be continuous with respect to both arguments.

Aggsumption 2: U = f{u(v): wu(e) 1Is plecewise comtinuous in the
interval [0,2) and ||u(e)j|® = sup |u(t)] < ®» where
tef{0, =)
P 2
lo()] = & w2, ue) erP)
=1 1

Definition: A plecewise continuous function f(+) has a period if

there exists a minlmum T€ T such that
f(t) = £(0) (4)

This minimal T is called the periocd of f(e).
Remark: This definition excludes constant f(e),
The first order necessary conditions for optimality derived from the

calculus of variations are:

u;f - f(x,u), (5

He
[]

T (6)

e
]
{
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x(0) = x(T),

A0) = A7),

H(Tt) - J(U(').XO.T) =0,

where A(t) eR" s the Lagrange multipiier that adjoins the systeu
constraints (2) to the performance index, L(x,u), forming the vartational

Hamiltonian defined as

H(x,u,\) = L(x,u) + 'f(x,u).

It is also assumed that the Legeudre—Cledsch condition {s met {n strong

form along the extermal path, 1.e.,

Any periodic solution to the twa po‘nt boundary value prodlem,

equations (5) through (9) 1s an extremum of the problem. The condition

(10) relating the Hamiltonian and the performance index, evaluated along

the optimal path is the special conditiown for testing the optimal period,

firet derived by Horn and Lina.




A SECOND VARIATION CONDITION

Soluticns that satisty the first order necessary conditions, equations
(5) tarougr (10) and (12) arc examined for ocal optimality by second

veriatlon tests, guch as the Jacobl necessary condition., A very useful

form of the Jacobi test, developed by Bittantl et. 31.7 and extended by

Gilbert and Bernsteinzo. shows whether or not a static sgolution {s
locally optimal. This test was used by Speyer15 and by Breakwell and
Shoaee21 to show that static cruise for many aircraft models 1s not fuel
ninimizing. However, this test provides 1insufficfent {nformation to
determine the optimality of cyclic or periodic solutions.

Ar important result of the research covered by this report Is the
development of a variational theory for testing perlodfc solutions. This
work was rvesented by .‘Speyer?'2 at the 1981 Joint Automatic Control
Conference in Charlottesville, VA and will be published this fall in the
IEEE Transactions on Aatomat ic Contr0123. Two earlier papers, clarified
and extended by this effort, are Br-iztanti, et. 81-6. who considered the
problem for fixed period, and Cha.lgs, wvho extended the work to free
period. The new results are summarized in the remaining paragraphs of
this section.

Propertizs of &sutonomous Hamiltonian systems and fthelr related
monodromy matrix are wused to estatlish relationships essential to
developing the second variational copgditions for optimalicy. The
monodromy matrix {is the transition mairix for ihe state equations (5)
through (9) evaluated over one period. It 1s shown that the monodromy
matrix hasg at least two unity eigenvalues and that two cf them are couplsd

(in zhe sawe Jordan block). The eigenvector associated with one of the
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unity eigenvalues 1s tangent to the state space orbit described by the
related extremal solution. The generalized eigenvector assoclated with
the other unity eigenvalue defines the direction of a oune-dimensional
family of orbits which varies ccutinuously with the Hamiltenian.
Determining this direction was a key factor in developing the algorithe
used for computing eztremal eolutions to thke optieal pericdic control
problew described in the rext section.

Apother important rvelationship derived from thie effort 1nvolves
classifying the eigenvalues that can result for real vzlues of the Riccatt
variable. The existence of a real-valued solutica to the Riccatt
differentjal equation is a well known second variation comdition. When
the golutfon to the Riccati e2quation is periocdic {t can be expressed in

the form

P-9%,. = 0, (13)

PO P #ER -0 21

22
/here P isx a vector of inicial conditions defiring the periodic solution
and the ®'e are square partitions of the monodromy matrix, The canonical

similarity traneformation of the monodromy matrix gives

P ¢
12 (14)

0 %, - PO,

where the 1identity (13) 1s used to obtain the zero element and the

similarity transform wmatrix 15 specified as,

R P
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The eigzunvaiues of this transformed matrix (14) are those ¢f the monodromy
matrix due to their invariance through a similarity traasforumation.
Becsuse of the zero ulement on the off-diagonal of the transformed matrix,
the eigenvalues of the submatrices on the diagonal are the same as for the
entire matrix.

Using the symplectic property of the monodroay matrix, which is also
preserved through the similarity transformation, the following important

relationship 1s obtained,
-1 T '
[011 + Q‘IZP] - [’zz - 20, ] 1s)

The significance of this equation 1is that it etrongly restricts the
eigenvalues of the monodroay matrix that correspond to real-valued Riccati
variable elements since the elements of the monodromy matrix must alsc be
real-valued for a physically realizeable system. Recall also the matrix
property that thé determinant of & matrix 1s equal to the product of 1itse
eigenvaluee. Considering eigenvalucé of magnitude ore, the following

result can be stated:

A necessary condition thst the Riccati variable matrix, P, be real-
valued 1is that there be no distinct eigenvalues of the monodromy

matrix on the unit circle.
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Bemark: The satisfaction of this condition does not guarantee that P

exists for all starting times over the interval of a period. The solution
of the Riccati differential equation 1s still raquired to ensure thsat
there are nc finiCe escape times.

A gecond variastional gsufficiency condition for weak local optimality
of cyclic processes can also be stated. The following condition extends

5,6

and clarifies previous statements of the conditicn:

For the periodic control problem described by (1) through (3) and

assumptions 1 and 2, (u°(- ), xg, To) eU x R"

x T forms a weak
local minimum 1f;

(1) the first order necessary conditions (5) through (10) are
satisfied,

(11) the strong fcm of the Legandre-Clekarh condition (12) {1
satisfied,

(111) there exists a real valued bounded symmetric matrix
solution to the Riccati dirfferentfial equation on
0 <t < t° satisfying the periodic condition
P(0) = °(¥),

(iv) there are no eigenvalues of the monodromy watrix on the
unit circle except for the two coupled unity (+1)
efigenvalues associated with the velocity vector §(0)
where 6T (H)/& ¥ 0 ensures this coupling, and

{v) the eigenvalues of the mounodromy matrix off the unit

circle are distinct. NAEEE




Bemarks:
1. The requirement for earlier statemente of thie sufficiency
3,6 ) T+ ¢
condition that the watrix z( T ,0)= 11+ IZP have no unity
eigenvalue is never sstisfied. PFurthermore, it is required in condition
(1iv) that the remaining eigenvalues of 01(1,0) not be on the unit circle.
2. GCondition (v) is a form of the strongly positive condition which

is totally lacking 4o the previous statements of thie sufficiency

condition.

COMPUTATIONAL TECHNIQURS

Although periodic optimai control problems had formed an important
class of practical problems, few numerical investigaticns had been
reported through 1980. Initial experimeantation indicated poor convergence
behavior for first order optimization schemes relative to a class of
aircraft cruise problema.l6 It has been recognized that this was due in
part to the shallow curvature of the cost criterion, partly due to the
lack of seneitivity of first order methods, and finally due to the great
difficulty in closing the solutions (satisfying the periodicity
requirements).

In order to develop a better understanding of the difficultiesn
encountered in earlier numericel {nvestigztions of the optimal cyclic
aircraft cruigse problem, an fllustrative, wiuimum state, optimal periodic
control problem was formulated. 4An analytical asolution to this problem
was first obtgined17 using a perturbation mnathod wost frequently
credited to Lindstedt and Poincare. The solution can be expressed in the

form of an asympitotic series expansion about a small parameter which alsoc

10
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can be written in the form of a Fourler veries expansion. Thisg result
captures an interesting characteristic of the solutions that satisfy the
first order necessary conditions, equations (5) chrough (9). That is,
they form a sget of solutions varying continuously 1iun anplitude and

17

period. The results cof this study were presented by Evans at the 1979

Joint Automatic Control Conference in Deaver, CO..

The 1initia]l numerical atudy18

of the {liustrative problem sghowed
that the approximate analytical solution was quite good. It verified the
infinity of asolutions that satisfy equations {(5) through (9) and form a
continvous eet or family. However, it was also Jdiscovered that an
infinity of families of solutions were found to exist. The families
intersect at common solutions called tifurcation points. An 1llustration
of these results ls given later in the section. It should be noted that
much work has been accomplished by dynamicists determining pecriodic
solutions to a set of first order differential equations. The work hy
Benon24 and by Contopoulos25 has been invaluable in this vresearch and
it provides a detailed characterization of solution families and
bifurcation points.

The results from the numerical investigation of the i{llustrative
problem were presented by Evan026 at the 2nd International Federation of
Automatic Control Applications of Nonli¢near Programming and Optimization
at Oberpfaffenhofen, West Germany in September 1980. The eunhasis here
vas placed on identifying the richness and ccaplexity of the solutioms to
this type of control problem. Characteriptics of solutiona and of
families of solutions were examined in some dstsil. The assoclated paper

was published in the Conference Proceedings.

11
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The computer program that was used for the 1initial study was an
adaption of one develcped by Broucke27 to find periodic solutions to 4th
order dynamic systems. Search methods about a known solution vwere used to
find new solutions of the family. As indicated ia an ecarlier section the
direction of the family can be predicted from the generalized eigenvector
asgociated with the second unity eigenvaiue of the monodromy matrix. A
shooting method, using thegse predicted starting values, integrates the
Buler-Lagrange equations (5) through (9) to obtain periodic solutions in
convergent 1iterations. The improved shooting method and additional
results from the numerical 1investigation of the problem was presented by

28 at the 20th 1EEE Conference on Decision and Control at San Diego

Evans
in December 1981, The associated paper was published in the proceedings
to the conference.

The remainder of this section expresses important concepts and key
relationships assocfiated with the development of the computational
technique employed during this research effort. First, tdentification of
solutions 1s wmost easily accomplished by association with their initial
conditions since a set of 1initial conditions {dentifies a unique
solution. An importent characteristic of a periodic solution 1s the
number of axis crossinge in the same directiosn that occurs during one
period of the solution for a particular variadble of the problem. This is
a distinguishing characteristic of a family of eolutions. In most cases,
the number of sxis crossings is the same fur all solutions of the family.

This can be used as a program check to verify that a new solution belongs

to the family thet wag intended to be followed.

12
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After one solution has been obtained, the initial conditions for the

next solution on the family can be projoc-ed. With the definition,

y(0) ~ 5(1) (16)

"

Y

a small change in Y due to a variation in the {aitial conditions y(0) and

the period (T) gives the following results:

d¥ = &{0) - & y(1) - y(1) d1 (17)

dt
Y = (3 ¢1) [sy(c)] (18)

Two elements mus: be fixed to use 1Y to predict nev gueeses since (1)
;(t) *s proportional to a column in ¢-I, and (2) ¢-I becomes singular
as a solution is approached. Removing corresponding columneg of

[;(T) 9-1) eiininates indeterminancy resulting in
Y = 6z (19)

Taking the pseudo inverse of 8 allows computation of new sg:arting
conditions fror &z for determining a new golution of the family. £ less
cumbergome predictor, such ag a curve fitting interpolater, is suigested
after several solutions have been obtained.

To illustrate the compuatationsl technique some results of the ainimum
state, optimal periodic control problems will be used. The Euler Lagrange

equationa derived from the first order conditions for this problem are

13
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x, L S (20) ﬂ
|
% ]
| A
' (] - - 2
| K v (21) 1
L !
ll - Xy (22) !
3
- - - A
. 4, L B TS T (23)
and x(0) = x(T), MN0) = AD. (24) j
]
For this problea a static solution exists; J.e., X, =%, = Al A, " 0.

Starting from this solution, a famfly of solutions can be determined as 1in |
Figure 1. The solutions are represented by fnitial conditions. For this ‘
i1lustration x2(0) - &(0) = 0 for all points graphed. The initial
value of x i8 represented on the grapn. The last conditicn is ;

1
determined by the relationship of the other states and the Hamiltonian

evaluated at the initial ti{me. The state relationships (xl vs x2) for
several solutions are superimposed on the graph of the family and zentered

at points corresponding to their i1egpective initial conditions. The scale

N

of the X, ve. X, plots are all the same.

As jindicated before, an {nfinity of families of solutions exist. {

Plots similar to the previous one are depicted ip Figures 2,3, and & for .

three additional families. Bach plot 1s to the same scale a3 in Figure

1. Rote the uumber of axis crosaings in the various examples. For a

femea al

single faeily the number crossings are generally the same. The family

that emanates from the static solution is called the principal fimily; all .

14
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others are branchk families. The solution identified by ¢ iu Figures 1
through &4 represents the solution of the respactive family that also
satisfies the optimal period conditions, equation (10).

Several addfitional levels of brai-hing are showvn in the detail of
Figure 5. Note that femilies branch omnly in “stable” areas of the
family. Here stability refers to no eigenvalues of the monodromy wmatrix
existing outside the unit circle. Bifurcation points (brauch pointe of

the femilies) are dense in the stable regions of the family.

9.0 0.1 0.2 0.
3.0 < - + -} -— +
]\\ PRIKCIPAL FAILY - FA
-0.03% IT
;
]
.o.m -
-C.0M ¢+
"

Yigure 1. Variation of Periodic Solution Along Principal Family
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The purpose of this detail 1is 1intended to {dentify some

characteristice of the solutions and to emphssize the necessity of

developing a systematic approach for investigating optimal periodic

control probleme. The amplitude and period of solutions along a family

vary continuously. However, sharp differences in the amplituie and period

of solutisns of different families generally exist cven though initial

conditions for both may vary only slightly. See reference 18 for

1identifying bifurcation points and branch families.

Summarizing the computational technique; first, a shooting method is

used to find a closed periodic path which satisfies the first order

necessary conditions (the Euler Lagrange equation (5) through (%), except

for the transversality condition (10) associated with free period). Then
a one-dimensional family of periodic solutions 1s constructed using the
generalized eigenvector or a curve fitting interpolator to predict tnitial
conditions of additional solutions. Finally, the family is traversed in
the direction of decrcasing cost criterion until the optimal period

condition (10) iy satisfied.

OPTIMAL AIRCRAFT CRUISE

Fuel efficlent cruise trajectories for eircraft have been a subject of

continuous theoretical interest and are becoming one of practical interest

; as well. Since the steady state cruise path is not ntnlni:lngls for

most point mams aircraft models, the cbjective is to obdtain the periodic
paths that are ainimizing. There appear to be two underlying mechanisas 3

The first mechanism is the migmatch in the

for producing perifudic paths.

regiona of velocity and altitude where the aircreft is aerodynaaic and

i
propulsion efficient. This is the mechaniasm behind chattering (or relaxed i
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steady etate) cruise. There also 1is a potential and kioetic energy
interchange which is optimal fer fuel interchange which 1is optimal for
fuel performance. The need for substantizl kinmetic energy seems to be the
reassn for the velocity threshold found earlisrls.

Recent work in thi: area includes the Magter'sc Thesis of Halker29

and Danneliller30. Both applied the techniques summarired in this

report t5 1investigate the optimal periodic cruise of a hypersonic

cruigser. The results of this wvork were also presented by Speyer31 at

the AIAA Guidance and Control Conference at Danvers, MA, io August 1980,

A point mass model of ac atmospheric vehicle operating in the
hypersonic region was used to investigate the fuel {mprovement from the
steady state crulse path obtained by modulating the flight path. The fuel
improvement obtained was due solely to a potential-kinetic energy
interchange which was indicated by a frequency type second variational
analysis of the steady state cruise for the flat earth model. A family of
solutions was generated for both the flat and spherical earth models. By
applylng the second varlationmal sufficiency conditions for periodic
processes, only one flight path which involves the flat earth model was
found to be locally minimizing. The {wproveament of the pericdic cruise
over the steady state cruise for this example 1is 4,27, No 1locally
mintmizing path for the apherical earth model was found. Nevertheless,
the periodic extremel cruise paths found did improve fuel performance cver

their respcctive steady state cruise paths by 28 much as 4.5%.




RECOMMENDATIONS

The three principal cbjectives of this research have been
sari{sfaztoriiy achieved. Even though the aianimum state 1{1llustrative

problem has been exhaustively studied, further 1investigation has merit.

Verification of uew theoy or new compucational techniques are more eagpily

accompiished with the reduced state problem. Addit{onal relationships may
be exhibited by further {nvestigation of out-of-plane solutions,
eigenvector directiona at bifurcetion points, and other solutions that
also might satisfy all first and secound order conditions.

Now that a loceglly optimizing perlodic flight path has been found for
one wmodel, potential applications should be examinec. More realistic
aircraft wmodels should be developed and studied. Certainly, the
feasibility of subjecting the afircraft tc cyclic control wmust be
considered, in particular the cycling on aud off of {ts engines.

A related area of research is assoclated with quasi-periodic solutions
which may provide better performance in some 1instances than t e periodic
soluticna. A congiderable amount of research effort in this area has been

expended by statistical dynamicists.
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